The Blue-Blood Infused Porcine Chest Wall as a Novel Microsurgical Training Model of Internal Mammary Artery Preparation and Anastomosis

Kirsten A. Gunderson and Weifeng Zeng MD, Ruston J. Sanchez MD, Nicholas J. Albano MD, Michael L. Bentz MD, Samuel O. Poore MD PhD

Introduction

- Preparation of the internal mammary artery (IMA) as a recipient vessel is crucial in microvascular free flap breast reconstruction
- Limited opportunity to practice intraoperatively
- Existing chicken thigh models provide realistic simulation for vessel anastomosis, but translation to the OR is limited
- Live pig models provide highly realistic vessel and preparation simulation but are expensive and inconvenient

OBJECTIVE: Create a simple, inexpensive, and realistic training model for resident training of IMA preparation and anastomosis.

Materials and Methods

Anatomic Study
- Five Wisconsin miniature swine chest walls dissected
- Measurements taken included:
 - Width of ribs and intercostal spaces (ICS)
 - Size and location of IMA and IMV at each level

Materials
- Minipig chest wall
- Two plastic mannequin torso shells
- 12×12×1 in. layer of upholstery foam
- Blue-blood perfusion system

Model Assembly
- Assembled in 15 minutes
- One-time cost of 55 USD
- Release of SC joint allows chest wall to lay flat
- IMA and IMV easily cannulated to connect to blue-blood perfusion system

Resident Training
- Use model in microsurgical training curriculum to assess model fidelity

Results

- Overall anatomy and vessel size similar to humans
- Slight differences in rib shape
- Six ribs per specimen suitable for training purposes

Model Assembly
- Assembled in 15 minutes
- One-time cost of 55 USD
- Release of SC joint allows chest wall to lay flat
- IMA and IMV easily cannulated to connect to blue-blood perfusion system

Conclusions

1. This novel simulator for resident training of IMA preparation is:
 - Inexpensive
 - Easily assembled and stored
 - Highly realistic and translates well to the OR
2. This model also allows for real-time feedback of anastomosis quality
3. Effectiveness of training model to be evaluated in an upcoming study